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Network Representation and Transverse

Resonance for Layered Anisotropic

Dielectric Waveguides

OTTO SCHWELB, MEMBER, IEEE

Abstract —First, the matrix wave impedance in an unbounded uniaxial
lossless dielectric material is determined. Next, the transformation proper-
ties of the input impedance of a terminated anisotropic layer are estab-
lished. It is then demonstratéd that the boundary conditions in an aniso-
tropic dielectric slab waveguide lead to a generalized transverse resonance
condition involving the previously obtained matrix input impedances. Net-
work equivalent representations are’ given for waveguides fabricated with
dielectrics in polar and longltudmal orientations. The results show that a
circuit approach to the analysis-and design of planar amsotroplc dlelectnc
waveguides is feasible and practlcable
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I. INTRODUCTION

HE CONCEPT of impedance and equlvalent net-

work representation is often used to obtain the dis-
pers1on charactenstlcs of isotropic waveguides. As a result
of the additional couphng mechanisms acting between field
components in an anisotropic dielectric, the wave imped-
ance expands into matrix form, and circuit equivalents are
a great deal more cumbersome than those in the isotropic
case. For this reason an1sotroplc layered wavegmdes are
seldom - treated by the methods of circuit analysis. Yet,
there are some important configurations where the network
approach prov1des both 1ns1ght and a s1mple solution to
the gu1dance problem ‘
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This paper will investigate stratified waveguides fabri-
cated with lossless uniaxial layers either in the polar or in
the longitudinal configuration, as illustrated in Fig. I.
Polar configuration refers to a crystalline orientation where
the optic axis lies in the plane of the interface whereas in
the longitudinal case the optic axis is in the plane normal
to the direction of propagation. The third uniaxial config-
uration, the equatorial, where the optic axis lies in the
sagittal plane, leaves TE and TM modes uncoupled and,
therefore, does not require special treatment.

The paper first discusses the coupled differential equa-
tion which determines the electromagnetic field distribu-
tion normal to the boundary interfaces. The solutions of -
this equation provide the matrix wave impedance of a
homogeneous uniaxial dielectric. It is demonstrated that
the matrix input impedance of terminated isotropic and
anisotropic layers is subject to analogous transformation
properties. By imposing the boundary conditions, the char-
acteristic equation of various stratified guides fabricated
with one or more anisotropic layers is obtained. In each
case, it is found that the characteristic equation leads to a
transverse resonance condition (TRC) [1] involving the
previously determined matrix impedances. Utilizing equiv-
alences existing between the matrix impedance and the
matrix reflection coefficient, the generalized TRC is also
expressed in terms of the latter. Network equivalents for
the geometries analyzed in the text conclude the paper.

IL.

Consider a lossless stratified anisotropic waveguide con-
sisting of homogeneous layers supporting wave propaga-
tion in the plane of the interfaces. If the interfaces are
normal to x then the wavenumbers in the y and z directions
k, and k, will be common throughout the entire wave-
guide. Consequently the electric field in a given layer can
be expressed as

&(x,y,z.1) ZE_(x)expj(wt—kyy—k_,z)

MATRIX WAVE IMPEDANCE

(1)

where E(x), the modal distribution, depends on the geom-
etry and the material properties of the layer. As a result of
the layered structure the Maxwell eqnations can be sep-
arated in each region into a set of coupled first-order linear
differential equations involving only the transverse ( y and
z) field components, and into a set of algebraic equations
relating the axial (x) and the transverse field components
[2]. The differential equations are compactly expressed by

df (x)/dx= — jkoRf (x) @
where f7(x) = [E(x), H/(x), E(x), —H/(x)] is the
transposed transverse field vector, k3 = w’€g o,

mgexy/exx (1_ gz/exx)no
R: (A::/exx—lgz)/no _gexy/exx
_Bexy/exx - glgnO/Exx
(gﬁ - A_vz/exx)/no _gex:/exx
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Fig. 1. Layered waveguide geometry. The optical axis orientation of a

umaxal dielectric in polar, equatorial, and longitudinal configuration is
indicated. The electromagnetic wave propagates in the z direction.

is the coupling matrix, o =y(p, /€o) »

€y € €

€= €€ (4)

r— €0
sym.

is the symmetric real dielectric tensor, A  is the i, jth
cofactor of ¢, and the propagation vector is denoted by
k=kyrka,+ta,+ Ba_). The algebraic equations relating
the axial and transverse field components are expressed by
a 2 X4 matrix

Ex(x) - [exy/exx 5"10/‘” €)c:/exx Bno/exx
Hx(x) B/ g 0 — &/ 0
f(x). (5)

Of particular interest is the case depicted in Fig. 1, where
one of the transverse coordinates is chosen to lie in the
direction of propagation. This will be taken to be the z
direction and let 3/9, = — jk, (k, = k,§) vanish
throughout. The nonvanishing TE mode field components
are then £, H,, and H, whereas those of the TM mode are
E,, E_ and H, as shown in Fig. 1. Coupling between TE
and TM modes occurs only when there are nonzero ele-
ments in the off-diagonal blocks of R. With ¢ being zero
only €, , and/or A, can contribute to such coupling.

The relative permittivity matrix appropriate to a particu-
lar configuration is obtained by rotating the principal
coordinates of the anisotropic layer to coincide with the

—fe.. /e — &8, /¢
(5:8 - Ayz /‘xx)/"o - :foy/fxx

—Ber. /e (1= B8%/e.)mg )
(8, /ec—82) /10 —Be. /e,




SCHWELB: LAYERED ANISOTROPIC DIELECTRIC WAVEGUIDES

device coordinates [3]. In the polar configuration, e.g.,

¢ 0 0
cr:QT 0 ¢ O 0
0 0 ¢
€ 0 0

=(0

0 (e;—¢€)sinfcosb

€,00820 + €;5in*0 (€5 —¢,)sinfcosh | (6)
€,sin” 6 + €;cos* §

where § 1s the angle between the optic axis of the uniaxial
crystal and the z axis, and

(7)
0 sinf cosd
is the orthogonal rotation matrix.

When the permittivity matrix is known, the coupling
matrix, its four eigenvalues (the transverse wavenumbers
k,,i=1 to 4), and the characteristic equation (|-| denotes
the determinant of a matrix)

|[R—xI|=0

1 0 0
0=|0 cosf® —sinb

(8)
can all be evaluated. In the absence of off-diagonal ele-
ments in the rotated €,, the characteristic equation contains
only powers of B2 Wave propagation in this case is,
therefore, bidirectional. Furthermore, the characteristic
equation contains only power of x* and the eigenvalues of
R can be conveniently sequenced so that x, and k, = —
pertain to the TE mode, while k4 and k, = — k; pertain to
the TM mode. When e, is not diagonal, the eigenvalues of
R generally are no longer pairs of the opposite sign; rather,
they are a pair of real or conjugate complex numbers:
Ky, =k, >k, and ky,=x, +tx, Therefore, the modal
function in this case is

Ev('x’) = [Alexp(— ijX/)_i' AZCXp(thx/)] exp(—' jxax,)

+ [ Ayexp(— ji x")+ Agexp( jr . x") ] exp(— jr x')
' 9

where x’ = k,x is the normalized length in the x direction.
Note that the terms in square brackets propagate in direc-
tions determined by the wave vectors ky(fBa, + k,a.) and
ko(Ba.+«, a,), respectively. The amplitudes of the other
three transverse field components can be obtained by
solving for the eigenvectors of the coupling matrix [4].

In the longitudinal and polar configuration, the char-
acteristic equation contains only powers of 82 and k”. In
these configurations, therefore, wave propagation is bidi-
rectional and the transverse wavenumbers have pairwise
opposite sign (k, = —k,,x, = — ;) even though all four
transverse field components are coupled. The latter prop-
erty can be viewed as a consequence of tr (R)=0 which
constrains

In the equatorial configuration, R is block diagonal permit-
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ting the existence of pure TE and TM modes. The char-
acteristic equation in this case is a product of two factors:
one arising from the determinant of the upper left block of
R, characterizing TE modes, the second arising from the
determinant of the lower right block of R, characterizing
TM modes. The first factor is also a function of 2 and k?;
the second factor, however, includes a term in Bk destroy-
ing both the bidirectional symmetry and the antisymmetry
between k5 and «,.

An analysis of the Maxwell equations reveals that for a
symmetric permittivity tensor, a scalar permeability, and a
vanishing k the modal distributions display the following
parity (symmetry or antisymmetry in x) properties. In the
longitudinal configuration where ¢, , is the sole nonzero
off-diagonal matrix element of ¢,, E,, E,, H,, H, belong to
the same parity group and E., H, make up the group of
opposite parity. In the polar configuration where € .+ 0
the groups of opposite parity are E,, E,, H_and E,, H,,
H._, respectively. In the equatorial configuration (¢, # 0)
for TE modes, E,, H, have the same parity opposite to that
of H_; while, the TM field components are neither purely
symmetric nor antisymmetric. In the general case, where
more than one off-diagonal element of ¢, is nonzero, pure
symmetric or antisymmetric modes do not occur regardless
of geometrical symmetry.

The paper concludes that in a symmetric uniaxial dielec-
tric waveguide symmetric and antisymmetric modes

ES(x')= Afcos i x'+ A5 cosryx’
and
(10)

respectively, apply to all configurations except to equa-
torial TM modes where (10) is multiplied by the factor
expljB(e,. /€, )x’] resulting in angled wave propagation
[5]. The angle enclosed between the positive z axis and the
direction of wave propagation is a=tan”'(¢,. /e, .). The
relative amplitudes H, /E,, E, /E, and H, /E are essen-
tially the eigenvectors of R and have been given by Wang
and coworkers [6].

Having determined the field amplitudes and the trans-
verse wave numbers, we can calculate the wave impedance
of a homogeneous anisotropic material defined by

E=2z(H xa,) (11)
where b:f(x):[E}(x), E.(x)] is the row vector of the

transverse electric field and

zZ. B Z,

Iy v

Z.,. Z.

zy zz

EM(x)= A{ sink,x"+ A5 sin k;x’

zZ= (12)

is the wave impedance matrix of the dielectric. The ele-
ments of Z are found by substituting the modal field
expressions into (11). Considering that the terms in the
square brackets in (9) and the corresponding terms in the
expressions of the other three field components must sep-
arately satisfy (11). this process indeed provides the neces-
sary four equations. The resulting impedances for the three
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orientations discussed above are

(‘“‘1)_1 _(b’c3)71

—1_ -1
Ky K3

—1_ 1

Ky —K

Z=ny/(a"'=b"") 1 ’
‘ ary ' —bxy!

(13)
for the polar orientation with a 2 —tan#, b = /(e tan @),
K, = (e = B, &y =(& — B, /€)% and |Z]|=
MoKy /€ ks

c—d K Kg
Z =y /(cx3 —dx,) ; kys(c ' —d™h)

37 K
(14)
for a longitudinal orientation with ¢ Z - €, /(Btand),

d= Btanb, x, = (e, — B2, x3=[(e3~Be /1",
and | Z | = n5(ck, — dry) /[(dr, — cx4)cd] and, finally

(- 82) :
Z=mg 1/2
0 [(erc—B2)/€165]

for the equatorial orientation. Notice that (13) is symmetric
whereas (14) is antisymmetric' and that both are sums of
singular matrices. Regarding the wave admittance matrix,
it should be noted that it is not simply the inverse of Z,
although the determinant of Y is indeed the inverse of the
determinant of Z. The wave admittance matrix is defined
by

(15)

H =Y(a xE,). (16)

Consequently,
Z
— 1 T _ -1 zy
Y=0Z ‘o |Z| Zyz zZ. (17)

where
S
1 0l

III. TRANSVERSE RESONANCE

The TRC is often used to determine the dispersion
equation of propagating modes in isotropic layered wave-
guides. This section will generalize this condition to layered
waveguides where one or more regions contain homoge-
neous uniaxial dielectrics. First, the stratified geometry
shown in Fig. 2(a), consisting of an isotropic film over an
anisotropic substrate covered by an isotropic (air) overlay,
shall be discussed [7]. This will be foliowed by an analysis
of the symmetric waveguide illustrated in Fig. 2(b) where
all three regions are either in the polar or in the longitudi-
nal orientation. Equatorial dielectrics are disregarded be-
cause in this material TE and TM fields remain indepen-
dent and essentially isotropic conditions prevail.

To facilitate the analysis and to familiarize the reader
with the notation, listed below are the transverse electric
field components in the three regions of Fig. 2(a) assuming

TThe Z matrix will be called antisymmetric when Z,=—Z,.
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Fig. 2. The waveguide geometries analyzed in the text. In (a) the sub-
strate is either polar or longitudinal. In (b) the waveguide is symmetric
and the layers are either polar or longitudinal. The figure also indicates
the transverse wavenumber(s) in each region and the reflection coeffi-
cients at selected constant x planes.

first a polar substrate:
E,= Ayexp(a;x’)+ Ayexp (ayx’)

n . n substrate
E,=aA exp(ax’)+ bAyexp (azx’)

E, = ATE[exp (— jrx')+ T ™ exp (jkx')]

™ S ™ " film
E,= A™[exp(— jikx’)— T™exp ( jkx )]

E,= A™exp [~ a(x'—w')]
E, = A™exp[— a(x'—w")] (18)

where T™F =exp(j2¢) and T™ =exp(j2¢) denote TE
and TM reflection coefficients, respectively, arising at the
film-overlay interface. Let us further denote the local wave
impedances by Z™F =1, /k, ZTF = jn, /a, Z™ =5,k and
Z™ = — jn,a. The boundary condition at x=w (w'=
kow) yields

cover

tan (kw’'+ o) = jZT¢/ZTE

(19)
for TE modes and

tan(kw’+ ) = jZ™/ 7™ (20)
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for TM modes. The boundary condition at x =0, on the
other hand, results in the characteristic equation

1 1 —(1+TTE) 0

a ay  jyT(1-TTE) 0 _

4 b 0 —(1-T™) |
a /b ay/a 0 — p™MI+T™)

(21)
where yTF =7,Y ™ is a normalized admittance. Recalling
that the input impedances of TE and TM waves at x =0,
as seen looking in the positive x direction indicated in Fig.
2(a), are

Z™5(0) = jZ™cot ¢ and Z™(0) = — jZ™tany

(22)
respectively, one can, after some algebra, recast (21) into
what appears to be a generalized TRC:

1Z(0)+ Z7(0)| =0 (23)
where
- ZE(0) 0
Z0=" " (0)} (24)

is the input impedance seen looking towards the right at
x =0 and Z(0) is the wave impedance of the semi-infinite
polar substrate given by (13), where a, b has been replaced
by 4, b, respectively, and, in accordance with the exponen-
tial decay of waves in this region, , ; has been replaced by
— jay ;. In the degenerate case when 6 is either 0 or
7/2,¢,, vanishes, R becomes block diagonal, TE and TM
modes decouple, and the off-diagonal elements of Z(0)
become zero so that (23) reduces to

[2,,(0)+ Z™(0)][ Z..(0)+ Z™(0)] =0.  (25)

Note that as long as one of the two matrices in (23) are
symmetric, transposition of one has no effect because the
value of the determinant remains unchanged by moving the
T superscript from one matrix to another. Transposition
becomes significant later when, in some instances, both
impedances are antisymmetric.

When a longitudinally oriented substrate replaces the
polar one the second expression of (18) changes to

E.= j[(a;/d)A,exp(a,x') + (ay /) A exp (ayx)]
and the corresponding new characteristic equation is

1 1 —(1+TTE) 0

o, ay  yE(1-TTE) 0 _

¢ d 0 YTM(I4TT™) |
a/d ay/e 0 J(1=T™)

(26)

The boundary condition at x = w remains, of course, the
same. Again (26) can be manipulated into the TRC (23)
where now- Z(0) represents the semi-infinite longitudinal
substrate obtained from (14) by replacing ¢, d. and «, 4
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with their corresponding parameters for the substrate re-
gion, ¢, d, and — Jay 3, respectively.

The paper then looks at the symmetric dielectric guides
illustrated in Fig. 2(b) where all three regions are aniso-
tropic, polar, or longitudinal. To simplify the algebra, it is
useful to first determine the input impedance to an aniso-
tropic layer of thickness &, terminated by a dissimilar
anisotropic half space. Assuming the interface to be at
x =0, we wish to find Z(— h).

Regardless of the orientation of the optical axis in the
layer, E, at x = — h can always be chosen as (h'=k,h)

E(x'=—h)=d,[exp(— jx, ")+ T exp (i, 1)]
+ A3[exp(—- Jesh')+ F3exp(jx3h’)]

(27)
where I', and I are yet undetermined reflection coeffi-
cients at the interface. Having established the relationship
between E, and the other transverse field components in
the previous section, we can write down H,, E_, and H,
corresponding to (27). In the polar configuration

E(x'=—h)=ad [exp(— jx, i)+ Tyexp( jix,1")]
+ bA3[exp (— Jrsh')+ Tyexp (f"3h')]
(28)

whereas, in the longitudinal case, the same field component
is

E(x=—)=(k /d)A\[exp(— jx, ") = T exp(j, )]

+ (13 /¢) A exp (= jish') = Tyexp (s h')].
(29)

Substituting the field distributions into (11) and recalling
that 4, and A, are arbitrary, the four elements of the input
impedance matrix can be computed. The results are identi-
cal to the wave impedance expressions given in (13) and
(14) if «, is replaced by

k;=ux[1=T,exp(— j2x,h")] /[1+ Lexp (— j2x,h')].
i=1,3. (30)

The material properties of the terminating half space rela-
tive to those of the front layer manifest themselves in T
and I3.

Consider now a symmetric waveguide of 2/ width, as
shown in Fig. 2(b), bisected at x = 0, supporting a symmet-
ric [E,(x) = E (— x)] mode. Since the E, must be maxi-
mum at the x =0 plane. the appropriate reflection coeffi-
cients are I =1 and. consequently, k= jk tan(i, k'), i =
1.3. If the film material is in polar orientation, not only is
E, maximum at x=0 but so is E_; thus they are both
symmetric and the bisector can be regarded as an electrical
open circuit. However, when the film is in longitudinal
orientation, E, and E, have opposite parity: while the
bisector is an open circuit in the y polarization, it acts as a
short circuit in the z polarization. For antisymmetric modes
I = —1, the modified wavenumber to use is k, =
— jr,cot(x,h’) and the role of the bisector is reversed.
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The boundary condition can be expressed in terms of
impedances. Assuming polar dielectrics both in the film
and in the external region, equating all four transverse field
components at x = & results in the determinantal equation

1 1 1 1
Ok ja e

~ = 1
a b a b 0 @ )

Ki/b wy/a ja/b o jas/d

where the expression appropriate to the parity of E (x)
must be substituted for k;. When longitudinally oriented
dielectrics are used, (31) must be modified by replacing a, b
with ¢, d and &, b with ¢, d, respectively. Algebraic manipu-
lation again permits us to express (31) in the form of a
TRC referred to x = 4

|Z(h)+Z"(h)|=0 (32)

where Z (k) is the wave impedance matrix of the homoge-
neous external region given by (13) or (14) (k, = — ja,, i =
1,3) and Z(h) is the input impedance of the bisected film
region given by the same expressions save for the k, — «/
modification. Although the boundary condition was ap-
plied at a conveniently chosen value of x, the boundary
condition and the TRC must be satisfied at any arbitrary
interface such as that shown dashed in Fig. 2(b).

When expressed in terms of input admittances the TRC
assumes the same form as (32). This can be deduced from
(17) by considering that for any 2X2 matrix 4, odo” =
0’40 =0~ 'Ao, by further recalling that in general |47 +

B7'|= |A_‘||A+B||B*‘| and by taking into account
that neither Z nor Z is singular. An alternate form for the
TRC is often expressed in the isotropic case as 1— IT=0
[1, sec. 2.5] where I' and T’ are “left” and “right” scalar
reflection coefficients at an arbitrary interface within the
guide, analogous to those reflection coefficients indicated
in Fig. 2(b). When dealing with anisotropic waveguides, the
reflection coefficient at a particular interface separating
two dissimilar regions is defined by [6]

E =TE, (33)
where E, and E, are the reflected and incident transverse
electric field vectors, respectively. Denoting the wave ad-
mittances of the left and right hand regions by ¥, and Y,,

respectively, it can be shown [4] that

I=o’(¥,+1) (¥,-L)e (34)
where o has been defined earlier in connection with (17).
Consider now the cross-sectional plane at x shown dashed
in Fig. 2(b) and the reflection coefficient matrices referred
to this plane F(x) and I‘(x) From (34), one can deduce
that

I7(x):Yf[I‘an(x)a][I+on‘(x)o]_l (35)

and

Y(x)=Y, AI+6"T(x)a] ' [I1—6"T(x)o] (36)

where ¥, is the characteristic impedance of the film material.
Finally from (35) and (36), it can be shown [4] that the
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Fig 3. A network equivalent of the wave impedance of polar and
longitudinal dielectrics The central two-port represents erther an 1m-
pedance inverter or a gyrator defined by the given impedance matrices,
depending whether the dielectric is in polar or longitudinal configura-
tion, respectively

TRC in its generalized form as given in (32) is equivalent
to

|I—f‘(x)f‘(x)|:0 or |f‘(x)—f‘(x)|:0 (37)

depending on whether at least one impedance matrix is
symmetric or both antisymmetric, respectively.

IV. NETWORK REPRESENTATIONS

A network representation of the matrix wave impedance
of polar and longitudinal dielectrics given in (13) and (14)
is shown in Fig. 3. The central two-port is an impedance
inverter or a gyrator depending on whether the network
represents a polar or a longitudinal dielectric material,
respectively. Inasmuch as the Z matrix in (13) or (14) is a
sum of two matrices, the equivalent circuit in Fig. 3 can be
decomposed into two series connected two-ports.

An equivalent circuit of the layered waveguide illustrated
in Fig. 2(a) appears in Fig. 4(a). The semi-infinite overlay
occupying the x >w region is represented by its TE and
TM wave impedances, while the film region is equivalent to
two uncoupled TE and TM transmission lines. The aniso-
tropic substrate network model is the same as in Fig. 3, i.e.,
the central two-port assumes the role of either an imped-
ance inverter or a gyrator as the case may be. Z,,(0) and
Z_.(0) can be viewed as input impedances to infinitely long
transmission lines extending in the negative x direction,
supporting evanescent TE and TM waves.

Finally, the equivalent network of a symmetric aniso-
tropic dielectric guide 1s given in Fig. 4(b). Here the circuit
for the x > h region is analogous to that of the x < 0 region
in Fig. 4(a). The circuit shown to the left of x=1 is
equivalent to the half width dielectric film terminated at
x =0 so that, for symmetric (antisymmetric) distributions
in a polar material, both E, and E, are maximum (zero)
and for the same distributions in a longitudinal material E,
is maximum (zero) while E_ is zero (maximum). To see that
the network illustrated in Fig. 4(b) does indeed correspond
to the TRC (32), view it as a two-port between ports 1-1/
and 2-2’, both ports short circuited. Then, by stipulating
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Fig. 4. Network equivalents of the layered waveguides illustrated in Fig.
2. In (a) the two-port on the left is either an impedance inverter or a
gyrator depending whether the substrate dielectric is in the polar or
longitudinal orientation respectively. In (b), illustrating the right half of
Fig. 2(b), the above applies to both two- ports

that the input impedance to this two-port (shorted at the
output port 2-2') be zero, one obtains condition (32).

V. CONCLUSION

The TRC has been generalized to include uniaxial dielec-
trics in the polar or in the longitudinal configuration. The
equatorial configuration has been largely neglected because
it fails to couple TE and TM waves. The TRC has been
expressed in terms of impedances and admittances as well
as in terms of reflection coefficients, all of which are in ‘the
present case 2 X2 matrices.
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Further work is in progress to include asymmetric wave-
guides and’ dielectrics of dissimilar configurations. The
analysis is also being extended to cover lossy and mag-
netizable materials. Attention is focused on the fact that
the wave impedances are composed of singular matrices.
This property might considerably simplify the computation
of the input impedance of multilayered structures.
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