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Network Representation and Transverse
Resonance for Layered Anisotropic

Dielectric Waveguides,, :.
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,4Mract —First, the matrix wave impedance in an unbonnded uniaxial

Iossless dielectric material is determined. Next, &e transforptation proper-

ties of the input impedance of a terminated anisotropic layer are’ estab-

lished. It is then demonstrated that the boundary conditions in an anisc-

tropic dielectric slab waveguide lead to a generalized transverse resonance

condition involving the previously obtained matrix input i.m~dances. Net-

work equivalent representations are given for wavegnides fabricated with

dielectrics in polar and Iongitudbtal orientations. The results show that a

circuit approach to the analysis and deyi~ of planar anisotiopic tilelectrfc

wavegnides is feasible and practicable.
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I. INTRODUCTION

T HE CONCEPT of impedance and equivalent net-

work representation is often used to obtain Me dis-

persion characteristics of isotropic waveguides. As a result

of the additional coupling mechanisms acting between field

components in an anisotropic dielectric, the wave impeda-

nce expands into matrix form, and circuit equivalents are

a great deal more cumbersome. th~ those in the isotropic

case. For this reason anisotropic layered waveguides are

seldom treated by the methods of circuit analysis. Yet,

there are some important configurations where the network

approach provides both insight and a simple solutioh t.o

the guidance problem.

0018-9480/82/0600-0899$00.75 @1982 IEEE



900 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-30, NO. 6, JUNE 1982

This paper will investigate stratified waveguides fabri-

cated with lossless uniaxial layers either in the polar or in

the longitudinal configuration, as illustrated in Fig. 1.

Polar configuration refers to a crystalline orientation where

the optic axis lies in the plane of the interface whereas in

the longitudinal case the optic axis is in the plane normal

to the direction of propagation. The third uniaxial config-

uration, the equatorial, where the optic axis lies in the

sagittal plane, leaves TE and TM modes uncoupled and,

therefore, does not require special treatment.

The paper first discusses the coupled differential equa-

tion which determines the electromagnetic field distribu-

tion normal to the boundary interfaces. The solutions of

this equation provide the matrix wave impedance of a

homogeneous uniaxial dielectric. It is demonstrated that

the matrix input impedance of terminated isotropic and

anisotropic layers is subject to analogous transformation

properties. 13y imposing the boundary conditions, the char-

acteristic equation of various stratified guides fabricated

with one or more anisotropic layers is obtained. In each

case, it is found that the characteristic equation leads to a

transverse resonance condition (TRC) [1] involving the

previously determined matrix impedances. Utilizing equiv-

alences existing between the matrix impedance and the

matrix reflection coefficient, the generalized TRC is also

expressed in terms of the latter. Network equivalents for

the geometries analyzed in the text conclude the paper.

II. MATRIX WAVE IMPEDANCE

Consider a lossless stratified anisotropic waveguide con-

sisting of homogeneous layers supporting wave propaga-

tion in the plane of the interfaces. If the interfaces are

normal to x then the wavenumbers in they and z directions

k, and k, will be common throughout the entire wave-

guide. Consequently the electric field in a given layer can

be expressed as

&(x, y,z, t)=~(x) expj(ut–kYy–kzz) (1)

where E(x), the modal distribution, depends on the geom-

etry and the material properties of the layer. As a result of

the layered structure the Maxwell equations can be sep-

arated in each region into a set of coupled first-order linear

differential equations involving only the transverse (y and

z ) field components, and into a set of algebraic equations

relating the axial (x) and the transverse field components

[2]. The differential equations are compactly expressed by

d~(X)/dX= –jk,l?~(x) (2)

where jT(x) == [~y(x), 27=(x), ~Z(x), – HY(x)] is the

transposed transverse field vector, k; = ti2( Opo,

I

I

I

Jx
region 1

twglon 2

region 3

Fig. 1. Layered waveguide geometry. The optical axis orientation of a
umaxlal dielectric in polar, equatorial, and longitudinal configuration is
indicated. The electromagnetic wave propagates in the z direction.

-/is the coupling matrix, q. – (PO /<0) ,

is the symmetric real dielectric tensor, A,, is the i, j th
cofactor of c, and the propagation vector is denoted by

k= kO(~tiX + t~, + @Z ). The algebraic equations relating

the axial and transverse field components are expressed by

a 2 X 4 matrix

Of particular interest is the case depicted in Fig. 1, where

one of the transverse coordinates is chosen to lie in the

direction of propagation. This will be taken to be the z

direction and let El/ ~Y = – JkV ( ky = kof) Vanish

throughout. The nonvanishing TE mode field components

are then E.v, HX, and Hz whereas those of the TM mode are

EX, EZ, and Hv as shown in Fig. 1. Coupling between TE

and TM modes occurs only when there are nonzero ele-

ments in the off-diagonal blocks of R. With t being zero

only tx ~ and/or AY= can contribute to such coupling.

The relative permittivity matrix appropriate to a particu-

lar configuration is obtained by rotating the principal

coordinates of the anisotropic layer to coincide with the
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device coordinates [3]. In the polar configuration, e.g.,

[1

c, 00
C,=QT O Cl O Q

o 0 (3

I

c, o 0

= O t,cos2f3+c3sin20 (~3–c1)sindcos6’

I

‘ (6)

O (cq –e, )sindcosd c1sin2d+c3cos28

where 6’ is the angle between the optic axis of the uniaxial

crystal and the z axis, and

[

Q= ; c~d !—sm O

1

(7)

O sine Cose

is the orthogonal rotation matrix.

When the permittivity matrix is known, the coupling

matrix, its four eigenvalues (the transverse wavenumbers

K,, i = 1 to 4), and the characteristic equation (1. I denotes

the determinant of a matrix)

IR-ICII=O (8)

can all be evaluated. In the absence of off-diagonal ele-

ments in the rotated Cr, the characteristic equation contains

only powers of ~ 2. Wave propagation in this case is,

therefore, bidirectional. Furthermore, the characteristic

equation contains only power of ~2 and the eigenvalues of

R can be conveniently sequenced so that ~, and It2 = – ~,

pertain to the TE mode, while K3 and KA= – K3 pertain to

the TM mode. When c, is not diagonal, the eigenvalues of

R generally are no longer pairs of the opposite sign; rather,

they are a pair of real or conjugate. complex numbers:

K1,2= Ku * K,, and K3,4 = KC & Kd. Therefore, the modal

function in this case is

E,(X’) = [Al eXp(– jKbX’)+ #t2t?Xp(jKhX’)] eXp(– jKuX’)

-t- [~3exp(– jKdX’)+ A4exp(jKdx’)] exp(– jKCX’)

(9)

where x’= kox is the normalized length in the x direction.

Note that the terms in square brackets propagate in direc-

tions determined by the wave vectors kO(@2 + Kaii, ) and

kO( ~Z= + K, ii. ), respectively. The amplitudes of the other

three transverse field components can be obtained by

solving for the eigenvectors of the coupling matrix [4].

In the longitudinal and polar configuration, the char-

acteristic equation contains only powers of B 2 and K 2. In

these configurations, therefore, wave propagation is bidi-

rectional and the transverse wavenumbers have pairwise

opposite sign (K2 = — Kl, K4 = — K3 ) even though all four

transverse field components are coupled. The latter prop-

ert y can be viewed as a consequence of tr (R)= O which

constrains

;., =0.
,=[

In the equatorial configuration, R is block diagonal permit-

901

ting the existence of pure TE and TM modes. The char-

acteristic equation in this case is a product of two factors:

one arising from the determinant of the upper left block of

R, characterizing TE modes, the second arising from the

determinant of the lower right block of R, characterizing

TM modes. The first factor is also a function of P 2 and K2;

the second factor, however, includes a term in BK destroy-

ing both the bidirectional symmetry and the antisymmetry

between K3 and K4.

An analysis of the Maxwell equations reveals that for a

symmetric permittivity tensor, a scalar permeability, and a

vanishing kY ,the modal distributions display the following

parity (symmetry or antisymmetry in x) properties. In the

longitudinal configuration where ~,,, is the sole nonzero

off-diagonal matrix element of c,, EX”,Ey, H., Hz belong to

the same parity group and E:, HZ make up the group of

opposite parity. In the polar configuration where Cv=# O

the groups of opposite parity are EY, E,, HX and E., H,,,
Hz, respectively. In the equatorial configuration (~y= # O)

for TE modes, E,, HX have the same parity opposite to that

of H:; while, the TM field components are neither purely

symmetric. nor antisymmetric. In the general case, where

more than one off-diagonal element of C. is nonzero, pure

symmetric or antisymmetric modes do not occur regardless

of geometrical symmetry.

The paper concludes that ,in a symmetric uniaxial dielec-

tric waveguide symmetric and antisymmetric modes

E)T(X’) ‘/4 fCOSK1X’+ z4~COSK3X’

and

E:(x’)==A~ ‘, smK1x’+A~sinK3x’ (10)

respectively, apply to all configurations except to equa-

torial TM modes where (10) is multiplied by the factor

exp [jp(c., /c... )x’] resulting in angled wave propagation
[5]. The angle enclosed between the positive z axis and the

direction of wave propagation is a = tan ‘l(cX, /cyY). The

relative amplitudes HZ /Ey, EZ/Ey and H} /EV are essen-

tially the eigenvectors of R and have been given by Wang

and coworkers [6].

Having determined the field amplitudes and the trans-

verse wave numbers, we can calculate the wave impedance

of a homogeneous anisotropic material

F,,=z(H, xiix)

where ~,T(x ) = [ E~(x ), E:( .x)] is the

transverse electric field and

is the wave impedance matrix of the

defined by

(11)

row vector of the

(12)

dielectric. The ele-
ments of Z are found by substituting the modal field

expressions into (11 ). Considering that the terms in the

square brackets in (9) and the corresponding terms in the

expressions of the other three field components must sep-

arately satisfy (11 ), this process indeed provides the neces-

sary four equations. The resulting impedances for the three
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orientations discussed above are

[

(alC,)-’-(bfC,)-’ K; ’-K;’
z=qo/(a-’ –)-’) _, _,

K, — K3
-l_~K; l

UK,
I

(13)

for the polar orientation with a ~ – tan0,b ~ IC~/(t, tan 0),

K1 = (61 – /?2)1/2, K3 = (E3 – J?2tzz/f1)”2, and 12 I =

~; K1/’EIK3

Z= TIO/(CK3-dK, )
c–d K, — K3

K3 — K, qq(c-’ -)-’) 1
(14)

for a longitudinal orientation with c ~ – E, /( ~ tan 6’ ),

d~ ~tanO, K,= (6, –p’)’/’, K,= [(E3 –p’)E,/Exx]’/’,

and \Z [ = q~(cK, – dK3)/[(dK1 – cK3)cd] and, finally

I(e, -pz)-’f’ o
z=q~

[( ’xx- @/’l’31”2 I

(15)

o

for the equatorial orientation. Notice that (13) is symmetric

whereas (14) is antisymmetricl and that both are sums of

singular matrices. Regarding the wave admittance matrix,

it should be noted that it is not simply the inverse of Z,
although the determinant of Y is indeed the inverse of the

determinant of Z. The wave admittance matrix is defined

by

R,= Y(iixx EJ. (16)

Consequently,

II
Y=uz’’”’=lzl-’ ~ ~ (17)

yz

where

[1o –1~=
10”

III. TRANSVERSE RESONANCE

The TRC is often used to determine the dispersion

equation of propagating modes in isotropic layered wave-

guides. This section will generalize this condition to layered

waveguides where one or more regions contain homoge-

neous uniaxial dielectrics. First, the stratified geometry

shown in Fig. 2(a), consisting of an isotropic film over an

anisotropic substrate covered by an isotropic (air) overlay,

shall be discussed [7]. This will be followed by an analysis

of the symmetric waveguide illustrated in Fig. 2(b) where

all three regions are either in the polar or in the longitudi-

nal orientation. Equatorial dielectrics are disregarded be-

cause in this material TE and TM fields remain indepen-

dent and essentially isotropic conditions prevail.

To facilitate the analysis and to familiarize the reader

with the notation, listed below are the transverse electric

field components in the three regions of Fig. 2(a) assuming

‘The Z matrix will be called antisymmetric when Z, ~= – Z,,,.

?(C

.

., >.3

z

aniso tropic
substrate

o w
(a)

a

;TE, ~TP

isotropic
overlay

—x

(b)

Fig. 2. The waveguide geometries analyzed in the text. In (a) the sub-

strate is either polar or longitudinal. In (b) the waveguide is symmetric
and the layers are either polar or longitudinal. The figure also indicates
the transverse wavenumber(s) in each region and the reflection coeffi-

cients at selected constant x planes.

first a polar substrate:

E,= ~1 exp(alx’)+ ~3exp(a3x’)
substrate

E== ii~l exp(rxlx’)+ ;~3exp(a3.x’)

Ey=ifTE[eXp(-jKX’) +rTEeXp(JKX’)]

E, ‘ATM[eXp(-jKX’)- rTMeXp(jKX’)] ‘llm

E,= ~TEexp [– a(x’– w’)]

E== ~TMexp [– a(x’– w’)] cover (18)

where rTE = exp ( j2@) and rTM = exp (j2~) denote TE

and TM reflection coefficients, respectively, arising at the

film–overlay interface. Let us further denote the local wave

impedances by ZTE = To/K, ~TE = jqo/a, ZTM = TIOK and

2TM = – jqOa. The boundary condition at x = w (w’=

kOw) yields

tan(icw’+ 1#1)= jZTE\tiTE (19)

for TE modes and

tan(Kw’+ $) = j2TM/ZTM (20)
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for TM modes. The boundary condition at x = O, on the

other hand, results in the characteristic equation

1
1 1 -(l+rTE) o

a, C13 jyTE(l – rTE) o

ii 6 0 _(~-rTM)

C!,/& a3/ii o – jyTM(I + rTM)

=0

(21)

where yTE = qOYTE is a normalized admittance. Recalling

that the input impedances of TE and TM waves at x = O,

as seen looking in the positive x direction indicated in Fig.

2(a), are

ZTE(0) = jZTEcot @and ZTM(0) = – jZTMtan $

(22)

respectively, one can, after some algebra, recast (2 I ) into

what appears to be a generalized TRC:

Iz(o)+ .2(0)1= o (23)

where

2(0) =
[

Zqo) o
0 ZTM(0)i

(24)

is the input impedance seen looking towards the right at

x = O and 5(O) is the wave impedance of the semi-infinite

polar substrate given by (13), where a, b has been replaced

by ii, $, respectively, and, in accordance with the exponen-

tial decay of waves in this region, Kl,q has been replaced,by

– ja,,3. In the degenerate case when 9 is either O or

z’/2, fp, vanishes, R becomes block diagonal, TE and TM
modes decouple, and the off-diagonal elements of E(O)

become zero so that (23) reduces to

[<,,(0) + ZTE(0)] [.i?Z,(0) + ZTM(0)] = O. (25)

Note that as long as one of the two matrices in (23) are

symmetric, transposition of one has no effect because the

value of the determinant remains unchanged by moving the

T superscript from one matrix to another. Transposition

becomes significant later when, in some instances, both

impedances are antisymmetric.

When a longitudinally oriented substrate replaces the

polar one the second expression of (18) changes to

E,= j[(al/~)tilexp( alx’) +(a3/?)~3exp(a3 x’)]

and the corresponding new characteristic equation is

1 1 -(l+rTE) o

a, lx3 jyTE(l – rTE) o

2

1

= o.
t? o YT”(l + rTM)

a,/J a3/2 o j(l–r’”)

(26)

The boundary condition at x = w remains, of course, the

same. Again _(26) can be manipulated into the TRC (23)

where now Z(0) represents the semi-infinite longitudinal

substrate obtained from (14) by replacing c, d, and K,,3

903

with their corresponding parameters for the substrate re-

gion, t, d, and – jal,3, respectively.

The paper then looks at the symmetric dielectric guides

illustrated in Fig. 2(b) where all three regions are aniso-

tropic, polar, or longitudinal. To simplify the algebra, it is

useful to first determine the input impedance to an aniso-

tropic layer of thickness h, terminated by a dissimilar

anisotropic half space. -Assuming the interface to be at

x = O, we wish to find 2(– h).
Regardless of the orientation of the optical axis in the

layer, E, at x = – h can always be chosen as (h’= kOh)

EV(X’= ‘h’)= ~l[eXp(– jK1h’)+ rleXp(jK1h’)]

+A3[exp(– jK3k’)+ r3exp(jK3h’)]

(27)

where r, and r3 are yet undetermined reflection coeffi-

cients at the interface. Having established the relationship

between ~y and the other transverse field components in

the previous section, we can write down Hz, EZ, and HP

corresponding to (27). In the polar configuration

~=(X’= ‘h’)= a~1[t3Xp (- JK1h’)+ rleXp(~K1h’)]

+ b~3[eXp(– jK3h’)+ r3f3Xp(jK3h’)]

(28)

whereas, in the longitudinal case, the same field component

is

E,(L= ‘h’) =( K1/d)~l [eXp(–~K1h’) –rleXp(jKih’)]

+( Kq/C)Aq[eXp(– jK3h’)– r3eXp(jfC3h’)].

(29)

Substituting the field distributions into (11) and recalling

that ~, and ~3 are arbitrary, the four elements of the input

impedance matrix can be computed. The results are identi-

cal to the wave impedance expressions given in (13) and

(14) if K, is replaced by

K~=K, [l–r, eXp(–~2K, h’)]/[l +r, eXp(–~2Kzh’)],

2=1,3. (30)

The material properties of the terminating half space rela-

tive to those of the front layer manifest themselves in r,

and r~.

Consider now a symmetric waveguide of 2h width, as

shown in Fig. 2(b), bisected at x = O, supporting a symmet-

ric [ EV(X) = Ep( — x)] mode. Since the EY must be maxi-

mum at the x = O plane. the appropriate reflection coeffi-

cients are r, = 1 and, consequently, K;= jK, tan ( fc,h’). i =

1.3. lf the film material is in polar orientation, not only is

EY maximum at x = O but so is E:; thus they are both

symmetric and the bisector can be regarded as an electrical

open circuit. However, when the film is in longitudinal

orientation, E,, and E, have opposite parity: while the

bisector is an open circuit in the _v polarization, it acts as a

short circuit in the z polarization. For antisymmetric modes

r, = – 1, the modified wavenumber to use is K; =

– jK, cot (K, h’) and the role of the bisector is reversed.
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The boundary condition can be expressed in terms of

impedances. Assuming polar dielectrics both in the film

and in the external region, equating all four transverse field

components at x = h results in the determinantal equation

I

1 1 1 1
K; K; ja, ja3

b 6

I

=0
a ii

(31)

K{/b tc~/a jai/i ja3/ii

where the expression appropriate to the parity of ~P( x‘)

must be substituted for K;. When longitudinally oriented

dielectrics are used, (31) must be modified by replacing a, b

with c, d and d, ~ with ?, d, respectively. Algebraic manipu-

lation again permits us to express (31) in the form of a

TRC referred to x = It

@(h)+ z~(h)\=o (32)

where Z(h) is the wave impedance matrix of the homoge-

neous exte~nal region given by (13) or (14) (K, = — ja,, i =

1,3) and Z(h) is the input impedance of the bisected film

region given by the same expressions save for the K, + K:

modification. Although the boundary condition was ap-

plied at a conveniently chosen value of x, the boundary

condition and the TRC must be satisfied at any arbitrary

interface such as that shown dashed in Fig. 2(b).

When expressed in terms of input admittances the TRC

assumes the same form as (32). This can be deduced from

(17) by considering that for any 2X 2 matrix ~, u~u~=

u~~ u = u–’~ u, by further recalling that in general IA –‘ +
B–’I=IA –’IIA+BIII–’I and by taking into account

that neither ~ nor ~ is singular. An alternate form ~o~ the

TRC is often expressed in the isotropic case as 1– 17r = O

[1, sec. 2.5] where ~ and ~ are “left” and “right” scalar

reflection coefficients at an arbitrary interface within the

guide, analogous to those reflection coefficients indicated

in Fig. 2(b). When dealing with anisotropic waveguides, the

reflection coefficient at a particular interface separating

two dissimilar regions is defined by [6]

~,= r~
1 (33)

where E, and ~ are the reflected and incident transverse

electric field vectors, respectively. Denoting the wave ad-

mittances of the left and right hand regions by Y, and Yz,

respectively, it can be shown [4] that

r=u’(y, +~)-’(y, –y2)u (34)

where u has been defined earlier in connection with (17).

Consider now the cross-sectional plane at x shown dashed

in Fig. 2(b) and the reflection coefficient matrices referred

to this plane ~(x) and ~(x). From (34), one can deduce

that

i(x)= q[I–u~r(x)u] [I+cr~i(x)u]-’ (35)

and

Y(X) = y[l+u’~(x)u] -l[l–u’~(x)a] (36)

where yf is the characteristic impedance of the film material.

Finally from (35) and (36), it can be shown [4] that the

I

-[ 1
0 Zyz

‘l NV- ~y ~

Y.

[1
02 yz

‘GYP ‘ -z
o

yz

F1g 3. A network equivalent of the wave impedance of polar and

longitudinal dielectrics The central two-port represents either an im-
pedance inverter or a gyrator defined by the given Impedance matrices,
depending whether the dielectric is in polar or longitudmaf configura-
tion, respectively

TRC in its generalized form as given in (32) is equivalent

to

11- F(x) F(x)I=O or IF(x) -F(x)I=O (37)

depending on whether at least one impedance matrix is

symmetric or both antisymmetric, respectively.

IV. NETWORK IbPRESENTATIONS

A network representation of the matrix wave impedance

of polar and longitudinal dielectrics given in (13) and (14)

is shown in Fig. 3, The central two-port is an impedance

inverter or a gyrator depending on whether the network

represents a polar or a longitudinal dielectric material,

respectively. Inasmuch as the Z matrix in (13) or (14) is a

sum of two matrices, the equivalent circuit in Fig. 3 can be

decomposed into two series connected two-ports.

An equivalent circuit of the layered waveguide illustrated

in Fig. 2(a) appears in Fig. 4(a). The semi-infinite overlay

occupying the x > w region is represented by its TE and

TM wave impedances, while the film region is equivalent to

two uncoupled TE and TM transmission lines. The aniso-

tropic substrate network model is the same as in Fig. 3, i.e.,

the central two-port assumes the role of either {n imped-

a~ce inverter or a gyrator as the case may be. Z,,(0) and

Z==(0) can be viewed as input impedances to infinitely long

transmission lines extending in the negative x direction,

supporting evanescent TE and TM waves.

Finally, the equivalent network of a symmetric aniso-

tropic dielectric guide is given in Fig. 4(b). Here the circuit

for the x > h region is analogous to that of the x <0 region

in Fig. 4(a). The circuit shown to the left of x = h is

equivalent to the half width dielectric film terminated at

x = () so that, for symmetric (antisymmetric) distributions

in a polar material, both ~Y and E, are maximum (zero)

and for the same distributions in a longitudinal material E,

is maximum (zero) while E= is zero (maximum). To see that

the network illustrated in Fig. 4(b) does indeed correspond

to the TRC (32), view it as a two-port between ports 1– 1‘

and 2–2’, both ports short circuited. Then, by stipulating
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Fig. 4. Network equivNents of thelayered waveguides illustrated in Fig.
2. In(a) the two-port on the left is either an impedance inverteror a
gyrator depending whether the substrate dielectric is in the polar or
longitudinal orientation respectively. In (b), illustrating the right half of
Fig. 2(b), the above applies to both two-ports.

that the input impedance to this two-port (shorted at the

output port 2-2’) be zero, one obtains condition (32).

V. CONCLUSION

The TRC has been generalized to include uniaxial dielec-

trics in the polar or in the longitudinal configuration. The

equatorial configuration has been largely neglected because

it fails to couple TE and TM waves. The TRC has been

expressed in terms of impedances and admittances as well

as in terms of reflection coefficients, all of which are in the

present case 2X 2 matrices.
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Further work is in progress to include asymmetric wave-

guides and dielectrics of dissimilar configurations. The

analysis is also being extended to cover lossy and mag-

netizable materials. Attention is focused on the fact that

the wave impedances are composed of singular matrices.

This property might considerably simplify the computation

of the input impedance of multilayered structures.
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